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The stability of ballooning modes localized to the null point in both the standard

and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series

expansion of the flux function is performed in the vicinity of the null point with

the lowest, non-vanishing term retained for each divertor configuration. The energy

principle is used with a trial function to determine a sufficient instability threshold.

It is shown that this threshold depends on the orientation of the flux surfaces with

respect to the major radius with a critical angle appearing due to the convergence

of the field lines away from the null point. When the angle the major radius forms

with respect to the flux surfaces exceeds this critical angle, the system is stabilized.

Further, the scaling of the instability threshold with the aspect ratio and the ratio

of the scrape-off-layer width to the major radius is shown. It is concluded that

ballooning modes are not a likely candidate for driving convection in the vicinity of

the null for parameters relevant to existing machines. New importance is given to an

axisymmetric mixing mode [Farmer and Ryutov, Phys. Plasmas 20, 092117 (2013)]

as a likely candidate to explain current experimental results.
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I. INTRODUCTION

The heat loads on the divertor plates in a fusion reactor are expected to be well beyond

the limits of currently existing materials. For this reason, much effort is being exerted to

find novel ways to reduce heat loads on the divertor plates. One such idea is the snowflake

divertor, named for the characteristic hexagonal structure of the separatrices. This hexago-

nal structure is due to the presence of a second order null in the poloidal field, i.e. Bp ∝ d2

where Bp is the magnitude of the poloidal field and d is the distance from the null point in

the poloidal plane1,2. For comparison, a standard divertor configuration has Bp ∝ d, and

the separatrices form a characteristic ‘X’ shape. Because of this quadratic dependence on

the field strength, the snowflake divertor is believed to have many different positive effects

leading to a reduction of heat loads on the divertor plates3. One reason for this is that the

region over which βp = 8πp/B2
p � 1, where p is the plasma pressure, is much larger in the

snowflake than in the standard divertor4,5. The effects of large βp combined with unfavorable

curvature of the magnetic field can drive plasma instability, resulting in plasma convection

in the divertor region4,5. The resulting convection can lead to heat transport across the

separatrices, and because of the hexagonal structure in the snowflake, the resulting heat

flux would be deposited upon four strike points instead of the two that exist in the standard

divertor. Recently, the consequences of a third-order null leading to a “cloverleaf” divertor

have also been considered6. Such a divertor would lead to even more intense convection,

though the feasibility of producing such a divertor in the laboratory is not yet clear.

The snowflake divertor has been realized experimentally on the tokamaks, NSTX7,8,

TCV9–11, and DIII-D12 and it has been shown to lead to a reduction in heat flux. Further,

on TCV it has been observed that the heat flux was split over multiple strike points13,14,

suggesting that convection is indeed occurring in the divertor region. It is important to de-

termine the precise mechanism which is driving this convective process in order to optimize

the reduction in heat loads. The first possibility is that the plasma equilibrium, commonly

assumed to be well approximated by the vacuum fields, is lost due to the presence of a

toroidal current in the vicinity of the null point15. This absence of equilibrium would allow

for transport of plasma into the private flux region. If plasma equilibrium is maintained,

instability could also lead to enhanced transport. Two types of instabilities are most likely.

The first candidate, which has been considered in a model geometry, is that of an axisymmet-

2



ric, curvature-driven instability16. Because the instability is axisymmetric, it corresponds to

an n = 0 mode and is not coupled to toroidal motion of the plasma. Further, an axisymmet-

ric perturbation leaves the toroidal field unperturbed. This is energetically favorable due to

the strength of the toroidal field. The second candidate iso that of a ballooning mode which

varies rapidly transverse to the magnetic field, but slowly in the direction of the field lines.

In this case, the energy of perturbing the magnetic field is offset by the slow variation of the

perturbation along the field line. It is this instability which we wish to consider here.

The theory of ballooning modes was first fully developed for the ideal MHD equations

for closed magnetic field lines by Connor, Hastie, and Taylor17. Since then, many papers

have been published about ballooning modes, and the theory is found in various reviews

and textbooks, e.g.18. In considering ballooning modes in the divertor region, the biggest

difference is that the field lines are now open and intersect the conducting end plates. This

changes the boundary condition from the periodic boundary condition present in the core

plasma. A great simplification is to treat the boundary plates as perfect conductors and

require line-tying boundary conditions at the plates. In reality, the formation of a plasma

sheath results in incomplete line-tying and lowers the growth rates of interchange modes19.

To properly account for these sheath boundary conditions, one must move beyond an ideal

MHD description to a two-fluid model for the plasma. These modes have been investigated in

detail using a Braginskii fluid model for the standard divertor to ascertain plasma stability20

and linear and non-linear evolution of ballooning modes21 in the scrape-off-layer (SOL). In

the context of ideal MHD, the effects of insulating, resistive, and conducting boundary

conditions on ballooning modes occurring along open field lines have been investigated22.

While these effects are certainly relevant, we desire to ascertain the effects of the complex

geometry present in the vicinity of the null point. To this end, we apply ideal MHD to

the plasma existing in the vicinity of the null point. Because the modes considered are

localized to this region, the resulting instability condition will be less strict than theories

which describe the core plasma and include the x-point in the analysis, for example, Webster

and Gimblett’s analysis of peeling modes near the separatrix23. The modes considered here

will have different consequences, being responsible for dynamics isolated to the null point.

This should be sufficient for ascertaining whether ballooning modes could be responsible for

the enhanced convection observed on TCV13,14, while giving general analytic relations that

can be applied to any device.
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The outline of the paper is as follows. In section II, the geometry of the flux surfaces

for both the standard and snowflake divertors is presented. In section III, the ballooning

mode formalism is summarized and applied to both the standard and snowflake divertors. In

section IV, a test function is used in the energy principle to derive an instability threshold.

Conclusions are presented in section V. Finally, a simpler model geometry used in Ref. 16

is considered in the Appendix in order to compare to the axisymmetric instability.

II. GEOMETRY OF STANDARD AND SNOWFLAKE DIVERTORS

In describing the divertor geometry, we do so in the vicinity of the null point of the poloidal

field. All equilibrium quantities are assumed to be independent of the toroidal coordinate,

ζ. In describing the poloidal plane, two coordinate systems are used, and relations between

the two will be given later in this section. The first is a Cartesian coordinate system, (x, z),

defined such that the origin is located at the null point. Since we are performing the analysis

in the vicinity of the null, the ordering of spatial scales is |x|, |z| � a < R, where a and

R are the minor and major radii, respectively. With these assumptions, ∇ζ = ζ̂/R. Flux

coordinates are also used because they allow for a simple form for the equations governing

the ballooning mode. Thus, the flux surface and generalized poloidal angle are denoted by ψ

and χ, respectively. Because of the spatial orderings, the straight, cylindrical approximation

will be made in both coordinate systems, but the use of flux coordinates allows for the

accurate description of the complicated magnetic geometry in the vicinity of the null point.

In flux coordinates, the poloidal field can be written as

Bp = ∇ψ ×∇ζ. (1)

The standard assumption that there is no toroidal current near the null point leads to the

equation,

∇×Bp = −∇ζ∇2ψ = 0. (2)

The Laplacian which acts on ψ can be simplified if the torus is treated in the straight-

cylindrical approximation. In this case, the equation reduces to(
∂2

∂x2
+

∂2

∂z2

)
ψ =

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2

]
ψ = 0, (3)

where r =
√
x2 + z2 and θ = tan−1(x/z) are the familiar polar coordinates. From here, it

is clear that the solutions can be expanded in terms of sinusoidal harmonics each with their
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own radial dependence. Additionally, since the fields must be bounded at the origin, the

flux function can be written as

ψ =
∞∑
m=0

(r
a

)m
(Am cos(mθ) +Bm sin(mθ)) , (4)

with Am and Bm being constants that determine the specific expansion of the flux function

about the origin. The constant term, m = 0, does not effect the poloidal field as Bp is

related to ψ through a derivative. The m = 1 term corresponds to a non-vanishing field at

the origin. Such a field is relevant to the model geometry in Ref. 16, and is considered in

the Appendix. Here, the m = 1 term is discarded. The m = 2 term is the dominant term

for the standard divertor in the vicinity of the null, the m = 3 term for the snowflake, and

the m = 4 term for the cloverleaf. For this reason, we approximate the flux function for the

standard divertor in the vicinity of the null point as

ψ = C
BpMRa

2

(r
a

)2

cos(2θ) = CBpMRa

(
x2 − z2

2a2

)
, (5)

and for the snowflake divertor,

ψ = C
BpMRa

3

(r
a

)3

cos(3θ) = CBpMRa

(
x3 − 3xz2

3a3

)
. (6)

In the above expressions, the constant has been determined by considering the asymptotic

value of the flux function as r ∼ a. In this limit, Bp = |∇ψ|/R ∼ BpM , the strength of the

poloidal field in the midplane. The specific choice of a cosine represents a specific orientation

of the flux surfaces. To retain generality in this formulation, the major radius is assumed to

form an angle, α, with the x-axis. It is true that higher order terms in the expansion may

contribute at distances from the origin that are on the order of the minor radius, but we

approximate the surfaces to lowest, non-vanishing order, consistent with the length scales

in the problem. Additionally, the lowest order terms given are proportional to a constant

of order unity, C, which depends on the specific global geometry of the problem. These

constants of order unity can be determined by considering the global geometry for a specific

device.

In determining the generalized poloidal coordinate for this geometry, a degree of freedom

exists. For convenience, we choose |∇χ| = |∇ψ|. This choice causes χ to be harmonically

conjugate to ψ. The form of χ is easily found for the standard divertor to be

χ = C
BpMRa

2

(r
a

)2

sin(2θ) = CBpMRa
(xz
a2

)
, (7)
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and for the snowflake divertor to be

χ = C
BpMRa

3

(r
a

)3

sin(3θ) = CBpMRa

(
3x2z − z3

3a3

)
. (8)

Further, a complex flux function can be defined in this case to be

η = ψ + iχ = C
BpMRa

m

(r
a

)m
exp(imθ) = C

BpMRa

m

(
x+ iz

a

)m
, (9)

where m = 2 corresponds to the standard divertor and m = 3 to the snowflake. The form of

the above function is convenient in that it is easily inverted so that the coordinates, (x, z),

can be expressed analytically in terms of their counterparts, (ψ, χ). This would not be the

case if higher order terms were present in the expansions or if a toroidal current were present

in the vicinity of the null, causing ψ to no longer be a harmonic function.

Next, the jacobian of the flux coordinate system can be determined from the relation

1

J
= ∇χ · (∇ψ ×∇ζ) . (10)

This can be done for arbitrary m using Eq. (9) to compute the necessary gradients. If this

is done, the following equation results,

1

J
= C2RB2

pM

(
x2 + z2

a2

)m−1

= C2RB2
pM

(
m2(ψ2 + χ2)

C2B2
pMR

2a2

)m−1
m

. (11)

Setting m = 2 gives the following result for the standard divertor,

1

J
= C2RB2

pM

(
x2 + z2

a2

)
= 2C2RB2

pM

(
ψ2 + χ2

C2R2a2B2
pM

)1/2

, (12)

and m = 3 for the snowflake divertor gives,

1

J
= C2RB2

pM

(
x2 + z2

a2

)2

= 34/3C2RB2
pM

(
ψ2 + χ2

C2R2a2B2
pM

)2/3

. (13)

Additionally, because of the choice that |∇χ| = |∇ψ|, a useful relation between the jacobian,

the magnitude of the poloidal field, and the major radius is

B2
pRJ = 1. (14)

This relation will be used later to simplify various expressions.

Figure 1 shows the flux surface geometry both in the standard and snowflake divertors.

The surfaces of constant ψ are shown as black curves, and the surfaces of constant χ as
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FIG. 1. Geometry of flux surfaces in the vicinity of the poloidal null. (a) Standard divertor, (b)

snowflake divertor. Solid black lines are surfaces of constant ψ and dashed red lines are surfaces

of constant χ. The thick blue lines indicate an alternate choice of (x, z) axes in which the flux

surfaces are rotated through an angle, α. Here, it is assumed that the machine center and the

toroidal curvature lies in the −x′ direction. The toroidal direction lies out of the board.

dashed red curves. The separatrices are represented by the straight black lines. The upper

panel shows the characteristic ‘X’ shape of the separatrix present in the standard divertor,

and the poloidal plane is divided into four disjoint regions in which the magnetic field lines

are separated from the other regions. The lower panel shows the characteristic hexagonal

shape of a pure snowflake divertor. In both panels, a second set of axes, (x′, z′), is illustrated
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by the thick blue lines. This reflects the arbitrary direction of the major radius which is

taken to form the angle, α, with the x-axis.

III. BALLOONING MODE EQUATIONS

The ballooning mode formalism has been discussed in many places, e.g.17,18,20–22, and

we refer the reader to these references for a more detailed presentation. For simplicity,

we assume that perfectly conducting plates are present in the poloidal plane, and that

these surfaces are defined at a constant χ. Defining the plasma displacement to be ξ, then

the boundary conditions are simply that each component of ξ must vanish at the plates.

Because of these boundary conditions, the component of ξ parallel to the magnetic field

which Hameiri retains22 decouples from the perpendicular motion when minimizing the

energy to find the most unstable mode. This allows the differential equations to be reduced

to an uncoupled equation for the perpendicular plasma displacement in which the parallel

displacement is chosen to minimize the energy.

Adopting the presentation used by Freidberg18, an eikonal approximation is first made

for the plasma displacement which takes the form

ξ = ηe
in
(
ζ−
∫ χ
χ0
ν dχ′

)
, (15)

where n corresponds to the toroidal mode number. The quantity, ν is chosen so that the

phase in the exponential is constant along a field line and is expressed as ν = BtJ/R, where

Bt is the toroidal field strength. From this eikonal approximation, the perpendicular wave

vector can be found by taking the gradient of the eikonal. This results in

k⊥ = −n
(∫ χ

χ0

∂ν

∂ψ
dχ′
)
∇ψ + n (∇ζ − ν∇χ) , (16)

= knψ̂ + ktt̂, (17)

where the wave vector has been resolved into two components: kn, the portion normal to

the flux surfaces; and kt, lying orthogonal to both the normal to the flux surfaces and the

magnetic field, parallel to the vector t̂ = ζ̂Bp/B − χ̂Bt/B. From Eqs. (1) it can be shown
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that |∇ψ| = BpR. Further, since we have chosen |∇ψ| = |∇χ|, kn and kt can be written as

kn = −nRBp

∫ χ

χ0

∂ν

∂ψ
dχ′, (18)

kt = n
B

RBp

. (19)

Next, to minimize the energy, η⊥ is to lowest order,

η⊥ =
X

nB
b̂× k⊥. (20)

Here, B is the total magnetic field strength, and b̂ is a unit vector in the direction of the

magnetic field. The n in the denominator is introduced here to keep the perturbed energies

and fields of order unity. With these definitions, the energy principle for the ballooning

mode is given by

ω2 =
W

K
, (21)

W =
1

4

∫
dψW (ψ), (22)

W (ψ) =
1

n2

∫
Jdχ

[
1

J2B2

(
k2
n + k2

t

) ∣∣∣∣∂X∂χ
∣∣∣∣2 − 8πRBp

B2

dp

dψ

(
k2
t κn − ktknκt

)
|X|2

]
, (23)

K =
π

n2

∫
Jdψdχ

ρ(k2
n + k2

t )

B2
|X|2, (24)

where the plasma displacement is assumed to have harmonic time dependence, exp(−iωt).

If ω2 < 0, this corresponds to instability and exponential growth of the perturbation. The

quantity, −ω2K, corresponds to the perpendicular kinetic energy with the parallel kinetic

energy neglected. This is done as in the original paper by Connor, et al.17 in order to simplify

the resulting equations. This simplification does not alter the resulting instability thresholds

derived, though it may overestimate predicted growth rates. The potential energy change

caused by the perturbation is given by W . As expressed in the equations, the integrand

only depends on ψ as a parameter, and as a result, the analysis can be performed on each

flux surface independently of the other flux surfaces, reflecting the one-dimensional property

that occurs when the ballooning limit is taken. The quantities, ρ and p represent the plasma

mass density and pressure, respectively, and κ corresponds to the curvature of the magnetic

field. The magnetic curvature is resolved into two components, κ = κnψ̂ + κtt̂, just as k⊥

is. The magnetic curvature is defined to be κ = b̂ ·∇b̂. From this definition and the plasma
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equilibrium, it can be shown that

κ = − 4π

B2
b̂×

[
b̂×∇

(
p+

B2

8π

)]
, (25)

=
4π

B2

[
1

JBp

∂

∂ψ

(
p+

B2

8π

)
ψ̂ − 1

JBp

∂

∂χ

(
B2

8π

)
Bt

B
t̂

]
. (26)

In the above expression, it is convenient to remove all dependence on the plasma pressure.

To do this, the Grad-Shafranov equation is used but with the toroidal current set to zero

in agreement with our earlier assumptions. If this is done, the components of the curvature

vector are found to be

κt = κ · t̂ = −1

2

Bt

JBpB3

∂B2

∂χ
, (27)

κn = −RBp

2

[
B2
t

B2

∂ logR2

∂ψ
+
B2
p

B2

∂ log J

∂ψ

]
. (28)

Substituting all of these expressions into the potential energy and kinetic energy, Eqs. (23)

and (24) become

W (ψ) =

∫
Jdχ

{
1

J2R2B2
p

[
1 +

(
R2B2

p

B

∫ χ

χ0

∂ν

∂ψ
dχ′
)2
] ∣∣∣∣∂X∂χ

∣∣∣∣2
+4π

dp

dψ

[
B2
t

B2

∂ logR2

∂ψ
+
B2
p

B2

∂ log J

∂ψ
+
RBt

JB2

(∫ χ

χ0

∂ν

∂ψ
dχ′
)
∂ logB2

∂χ

]
|X|2

}
,

(29)

K = π

∫
dψdχ

Jρ

R2B2
p

[
1 +

(
R2B2

p

B

∫ χ

χ0

∂ν

∂ψ
dχ′
)2
]
|X|2, (30)

Further, from the energy principle, an Euler equation can be derived. The result is

0 =
1

J

∂

∂χ

{
1

JB2
pR

2

[
1 +

(
R2B2

p

B

∫ χ

χ0

∂ν

∂ψ
dχ′
)2
]
∂X

∂χ

}

+

{
ω2 4πρ

R2B2
p

[
1 +

(
R2B2

p

B

∫ χ

χ0

∂ν

∂ψ
dχ′
)2
]

−4π
dp

dψ

[
B2
t

B2

∂ logR2

∂ψ
+
B2
p

B2

∂ log J

∂ψ
+
RBt

JB2

(∫ χ

χ0

∂ν

∂ψ
dχ′
)
∂ logB2

∂χ

]}
X.

(31)

At this point, substantial simplifications can be made if the orderings of the physical

problem are observed. First, we expand R in the vicinity of the null. If R0 is the major

radius of the null-point, then from Fig. 1, it is clear that

R = R0 + x′ = R0 + cos(α)x+ sin(α)z. (32)
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Further, because we assume that R0 � |x|, |z|,

∂ logR2

∂ψ
� ∂ log J

∂ψ
. (33)

At the same time, the toroidal field in the vicinity of the null is much larger than the poloidal

field, Bt � Bp. Using these relations, consider the expression, ∂ν/∂ψ. Because we expect

βt = 8πp/B2
t � 1 in the divertor region, i.e. the toroidal magnetic pressure is much greater

than the plasma pressure, the toroidal field is well-approximated by its vacuum solution.

This implies that the quantity BtR is constant. Combining all of this,

∂ν

∂ψ
= BtR

∂

∂ψ

(
J

R2

)
≈ B0

R0

∂J

∂ψ
, (34)

where the toroidal field and major radius have been approximated by their values at the

null-point, B0 and R0, respectively. Further, using Eq. (14) and B ≈ Bt ≈ B0,

R2B2
p

B

∫ χ

χ0

∂ν

∂ψ
dχ′ ≈ 1

J

∫ χ

χ0

∂J

∂ψ
dχ′ ≡ s. (35)

In this context, s corresponds to the shear in the magnetic field integrated along the poloidal

coordinate, as will be shown later in this section. Next, if we consider the quantity, ∂B2/∂χ,

the same approximations can be used to show that

∂ logB2

∂χ
≈ −∂ logR2

∂χ
−
B2
p

B2
0

∂ log J

∂χ
. (36)

Using these results and the orderings mentioned above, Eq. (31) simplifies to

0 =
1

RJ

∂

∂χ

[(
1 + s2

) ∂X
∂χ

]
+

{
ω2 4πρ

R2B2
p

(
1 + s2

)
−4π

dp

dψ

[(
∂ logR2

∂ψ
+
B2
p

B2
0

∂ log J

∂ψ

)
−
(
∂ logR2

∂χ
+
B2
p

B2
0

∂ log J

∂χ

)
s

]}
X.

(37)

At this point, it is simply a matter of applying Eq. (37) to the relevant divertor configura-

tions. Before doing this, it is important to understand the meaning of the physical constant,

χ0, present in the definition of s. Hameiri made the observation that χ0 corresponds to the

polarization of the electric field22. This is easily seen from Ohm’s law in the form

E =
iω

c
ξ ×B =

iω

c
X
k⊥
n
, (38)

=
iω

c
X

B

RBp

[
t̂− 1

J

∫ χ

χ0

∂J

∂ψ
dχ′ψ̂

]
. (39)
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From the above expression and Eq. (20), it is clear that χ0 corresponds to the point at which

the electric field is oriented completely in the geodesic direction and all plasma displacement

is normal to the flux surface. Further, at points along the field line away from χ0, the normal

component of the electric field grows relative to the geodesic component and a geodesic

component of the plasma displacement begins to shear the perturbations. Thus, an initial

perturbation is distorted in the geodesic direction as it moves along the field line away from

the point, χ0. In the absence of shear, the electric field would lie solely in the geodesic

direction and all plasma displacements would be normal to the flux surface.

We now apply the differential equation to the specific geometries found in the stan-

dard and snowflake divertors. To do so, we first consider the derivatives, ∂ logR2/∂ψ and

∂ logR2/∂χ. These derivatives can be computed as follows. First, from Eq. (9), we solve

for x+ iz in terms of η, resulting in

x+ iz = am1/m

(
η

CBpMRa

)1/m

. (40)

From the above equation, the desired derivatives can be computed by differentiating Eq.

(32) consistent with the large R0 approximation. When this is done, the following equations

result,

∂ logR2

∂ψ
=

2

R0

Re

[
d(x+ iz)

dη
e−iα

]
, (41)

∂ logR2

∂χ
= − 2

R0

Im

[
d(x+ iz)

dη
e−iα

]
, (42)

The derivatives are easily computed from this form, and result in

∂ logR2

∂ψ
=

2

CR2
0BpM

(
m2(ψ2 + χ2)

C2R2
0a

2B2
pM

) 1−m
2m

cos(α + δ), (43)

∂ logR2

∂χ
=

2

CR2
0BpM

(
m2(ψ2 + χ2)

C2R2
0a

2B2
pM

) 1−m
2m

sin(α + δ), (44)

Here, δ represents physically the angle a vector normal to a flux surface forms with the

x-axis. This angle is expressed as

δ =
m− 1

m
tan−1

(
χ

ψ

)
+ 2πj/m. (45)

The parameter, j, represents a branch cut, and can take values, j = 0, 1, 2, ...,m− 1, corre-

sponding to the disjoint regions in Fig. 1. Since the specific orientation of the flux surfaces

12



is captured by the parameter α, we can set j = 0 without loss of generality. This causes us

to restrict our attention to the flux surfaces bounded by the separatrix and enclosing the

positive x-axis in Fig. 1, but allowing us to vary its precise orientation with respect to the

major radius through the angle, α. For the above expressions, we simply choose m = 2 for

the standard divertor and m = 3 for the snowflake as mentioned in Section II.

Next, we compute the derivatives, ∂ log J/∂ψ and ∂ log J/∂χ. This is easily done for

general m by using Eq. (11), and results in the expressions

∂ log J

∂ψ
= −

(
m− 1

m

)
2ψ

ψ2 + χ2
, (46)

∂ log J

∂χ
= −

(
m− 1

m

)
2χ

ψ2 + χ2
. (47)

Further, using the relation for the jacobian, the shear, s, can be computed. This gives the

integral relation,

s = −2

(
m− 1

m

)(
1 +

χ2

ψ2

)m−1
m
∫ χ/ψ

χ0/ψ

dx

(1 + x2)
2m−1
m

. (48)

This integral can be evaluated for general m through the use of hypergeometric functions.

For the standard divertor, the integral can be performed exactly and becomes

s = −χ
ψ

+
χ0

ψ

√
1 + (χ/ψ)2

1 + (χ0/ψ)2 , (49)

whereas in the case of the snowflake divertor, no expression in terms of elementary functions

exists. Thus, in evaluating s for the snowflake, the integral can be performed numerically for

arbitrary χ0. For χ0 = 0, the two asymptotic forms can be used to compose an approximate

form for s for the snowflake that agrees well over the range of x. These asymptotic forms

are

s ∼ −2

(
m− 1

m

)
χ

ψ
,

χ

ψ
� 1, (50)

s ∼ −2

(
m− 1

m

)[∫ ∞
0

dx

(1 + x2)
2m−1
m

](
χ

ψ

) 2(m−1)
m

,
χ

ψ
� 1, (51)

Thus, for the snowflake, the function, s can be well approximated by

s ≈ −4

3

χ

ψ

(
1 + 0.7554

∣∣∣∣χψ
∣∣∣∣)1/3

, (52)

with the constant, 0.7554, found by numerically performing the integral in Eq. (51).

13



Finally, Eq. (14) allows an expression for B2
p to be quickly found as expressions for the

jacobian have already been given, and R can simply be approximated as R0, consistent with

our approximations. With these expressions, the differential equation modeling ballooning

modes can be written specifically for the two divertor configurations we are considering. To

do so, it is useful to scale the equations so that the dimensionless parameters are clearly

apparent. This is done through the relations

ψ → CR0aBpMψ, (53)

χ→ CR0aBpMχ. (54)

Further, it is convenient to replace the variable χ with x = χ/ψ as this is the natural scaling

for the poloidal coordinate. This greatly simplifies the resulting equations. The differential

equation for the standard divertor becomes

− ∂

∂x

[
(1 + s2)

∂X

∂x

]
+ βpM

d log p

d logψ

[
a

2
√

2C2R0ψ1/2

cos(α + δ)− s sin(α + δ)

(1 + x2)3/4

−
B2
pM

2B2
0

1− sx
1 + x2

]
X =

ω2a2

4C2v2
AM

1 + s2

1 + x2
X.

(55)

In the above equation, βpM = 8πp/B2
pM and v2

AM = B2
pM/4πρ. Performing the same steps

for the snowflake divertor, the result is

− ∂

∂x

[
(1 + s2)

∂X

∂x

]
+ βpM

d log p

d logψ

[
a

18C2R0ψ

cos(α + δ)− s sin(α + δ)

1 + x2

−
B2
pM

3B2
0

1− sx
1 + x2

]
X =

ω2a2

38/3C2v2
AMψ

2/3

1 + s2

(1 + x2)4/3
X.

(56)

To evaluate the derivative d log p/d logψ, we assume that the full pressure drops over the

width between the flux surfaces, ψ = 0 and ψ = ∆M/a. The latter flux surface corresponds

to the flux surface at the edge of the SOL. Thus, the derivative becomes

d log p

d logψ
≈ ∆p/p

∆ψ/ψ
≈ −1. (57)

Finally, in both Eqs. (55) and (56), we use Dirichlet boundary conditions for X to reflect

the line-tying boundary conditions. If the distance from the null to the plates along the

separatrix is L, this translates to a value of x = ±L2/2∆Ma for the standard divertor and

x = ±L3/3∆Ma
2 for the snowflake divertor. Typically, these values of x are much greater

than unity, and in the next section we will neglect the plates all together. This is valid so

14



long as the eigenfunctions are localized to small values of x, which will be the case due to

the increasing shear with increasing x.

We close this section with a discussion on shear. Analysis of shear in the snowflake

divertor has been performed elsewhere24. In what follows, a slightly different presentation

is given in order to elucidate the relevance of the shear to the problem considered here.

The relative strength of the shear in the snowflake as compared to the standard divertor is

somewhat misleading from the form of Eqs. (49) and (52). The fact that s grows faster in

the snowflake than in the standard divertor as a function of χ/ψ reflects the fact that for a

given poloidal distance traversed, s will be larger in the snowflake case. However, because of

the smaller poloidal field in the snowflake, this corresponds to many more toroidal transits

and a much larger distance along the field line will have been traversed. To see this more

clearly, we first find the position of a field line poloidally as it moves toroidally around the

device. We set C = 1 in what follows as its precise value is unimportant for this discussion.

We start at the point x = x0, z = 0. Since the field lines are confined to surfaces of constant

ψ, this gives us a relation between x and z along the ray’s trajectory. For the standard

divertor, the trajectory of the rays is governed by

dx

z
=
dz

x
=
dζ

q∗
, (58)

where q∗ = aB0/RBpM . Further, constant ψ requires that x2
0 = x2 − z2. Integrating the

above equation gives

x = x0 cosh

(
ζ − ζ0

q∗

)
, (59)

z = x0 sinh

(
ζ − ζ0

q∗

)
. (60)

Substituting these results into Eq. (49) with χ0 = 0 results in

s = − sinh

(
2 (ζ − ζ0)

q∗

)
≈ −2 (ζ − ζ0)

q∗
, (61)

where the approximate form is for small argument. Doing the same procedure for the

snowflake,
dx

2xz
=

dz

x2 − z2
=

dζ

aq∗
. (62)

Constant ψ requires that x3
0 = x3 − 3xz2. Solving for z and substituting into the above

equation results in ∫ x

x0

1

2

√
3

x′(x′3 − x3
0)
dx′ =

ζ − ζ0

aq∗
. (63)
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This integral can be approximated for values of x close to x0. If this is done, expressions for

x and z are,

x = x0 + x3
0

(
ζ − ζ0

aq∗

)2

, (64)

z = x2
0

(
ζ − ζ0

aq∗

)
. (65)

Plugging this into the asymptotic expression for s for χ/ψ � 1, results in

s = −4
x0

a

ζ − ζ0

q∗
. (66)

From here, it is apparent that the shear is smaller for a given toroidal distance travelled in

the snowflake by a factor of x0/a. For a given SOL width in the midplane, ∆M , the distance

closest to the null is x0/a = (3∆M/a)1/3. This is typically a small factor, though the greater

fanning of the flux surfaces near the null results in the exponent 1/3, which can make the

shear comparable for the two divertor configurations.

IV. INSTABILITY THRESHOLD

The next step is to be able to determine the thresholds for instability for Eqs. (55) and

(56). This amounts to determining the value of βpM for which ω2 = 0. Further, for a given

value of βpM , the parameter, Γ = ω2a2/v2
AM can be determined. To do so, we employ a

variational approach in which we use a test function to approximate the fundamental mode

of the differential equation. For this reason, the thresholds reported are sufficient conditions

for instability, but they are not necessary. Further, we set χ0 = 0. This is done because

we are interested in modes which are unstable in the vicinity of the null point where the

poloidal field is small. A more detailed numerical analysis could be performed in which

different values of χ0 are explored, but we leave this for applications to specific experimental

devices as the methodology developed below will be directly applicable in those cases. It

should be mentioned that in choosing values of χ0, it is important that the spatial positions

still satisfy the length scales of the problem, i.e. that r/a� 1.

We first consider the standard divertor. In this case, the choice of χ0 = 0 greatly simplifies

the differential equation into the form

− ∂

∂x

[
(1 + x2)

∂X

∂x

]
− βpM

[
a

2
√

2C2R0ψ1/2

cos(α + δ) + x sin(α + δ)

(1 + x2)3/4
−
B2
pM

2B2
0

]
X =

ω2a2

4C2v2
AM

X.

(67)
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Casting the equation into a variational form is easily done by multiplying by X and then

integrating over the domain. The trial function chosen is of the form

X =

√
1

π (1 + x2)
. (68)

This choice enables most of the integrals to be performed analytically. Further, because

|X|2 converges to zero as 1/x2, the conducting planes can be approximately neglected as

these conditions are enforced at large values of x as mentioned in Section III. Performing

the resulting integrals, ∫ ∞
−∞

(
1 + x2

) ∣∣∣∣∂X∂x
∣∣∣∣2 dx =

1

2
, (69)∫ ∞

−∞

cos(α + δ) + x sin(α + δ)

(1 + x2)3/4
|X|2 dx ≈ 1√

2
cosα, (70)∫ ∞

−∞
|X|2 dx = 1. (71)

In evaluating Eq. (70), the odd portion of the integrand vanishes. For nonzero values of

χ0, this would not be the case, and an additional term proportional to sinα would appear.

This would have the effect of shifting the argument of the cosine on the right hand side

of Eq. (70) by some angle, and it would change the the numerical coefficient. Both of

these effects would display a complicated dependency on the value of χ0. In our case, the

resulting integral is performed numerically due to the factors of cos δ and sin δ that appear.

The resulting numeric integral is close to the factor 1/
√

2, and we make this approximation

for simplicity of expression. Upon performing the integrals, the following equation results,

1− βpM

(
a

2C2R0

(
a

∆M

)1/2

cosα−
B2
pM

B2
0

)
=

ω2

2C2a2v2
AM

, (72)

where in the above expression, the choice ψ = ∆M/a has been used, consistent with earlier

approximations. The above equation can be written in a simple form if the factor of B2
pM/B

2
0

is factored out and the definition

cosαc = 2C2R0

a

B2
pM

B2
0

(
∆M

a

)1/2

=
2C2

q∗2
(∆Ma)1/2

R
, (73)

is made, with q∗ = aB0/RBpM . Further, we define Γ = ω2a2/v2
AM . With these designations,

the equation becomes

Γ = −2C2

[
βt

(
cosα

cosαc
− 1

)
− 1

]
, (74)

17



and the instability threshold becomes

βpM >
2C2R

a

(
∆M

a

)1/2

cosα− cosαc
. (75)

The presence of a critical angle introduces an additional constraint that must also be satis-

fied, namely that cosαc < 1, in order for the above threshold to be valid.

Using the same procedure, we next examine ballooning instability in a snowflake divertor.

In this case, it is more appropriate to use a more rapidly converging test function. This

is the case because of the decreased shear present in the snowflake. For this reason, we

confine ourselves somewhat poloidally, realizing that many toroidal transits are occurring

over this shorter poloidal distance. It is also important that the test function not converge

too rapidly as this would maximize the energy created by line-bending in the differential

equation, resulting in robust stability. For these reasons, we choose the test function,

X =

√
3

8π

1

1 + x2
. (76)

Higher powers of 1/(1 + x2)n have also been considered, but this choice gave the lowest

instability threshold. For the shear, the approximation given by Eq. (52) is used. Because of

the complicated form of s, all integrals are performed numerically. Using the same procedure

as in the standard divertor case results in the equations

Γ = −
(

∆M

a

)2/3

C2

[
I3

I4

βt
a

∆M

(
cosα

cosαc
− 1

)
− I1

I4

]
, (77)

cosαc =
I3

I2

aC2

Rq∗2
, (78)

βpM > C2 I1

I2

R∆M

a2

cosα− cosαc
. (79)

In the above expressions, the values of Ij are given by

I1 =

∫ ∞
−∞

(1 + s2)

∣∣∣∣∂X∂x
∣∣∣∣2 dx, (80)

I2 =
1

18

∫ ∞
−∞

cos δ − s sin δ

1 + x2
|X|2 dx, (81)

I3 =
1

3

∫ ∞
−∞

1− xs
1 + x2

|X|2 dx, (82)

I4 =
1

38/3

∫ ∞
−∞

1 + s2

(1 + x2)4/3
|X|2 dx. (83)
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For the specific test function we have chosen, the expressions become

Γ = −
(

∆M

a

)2/3

C2

[
6.04 βt

a

∆M

(
cosα

cosαc
− 1

)
− 31.5

]
, (84)

cosαc = 8.3C2 a

Rq∗2
, (85)

βpM > 43.2C2
R∆M

a2

cosα− cosαc
. (86)

If the distance of closest approach of the flux surface to the null point, d, is related to

the width of the SOL in the midplane, the equation, d3 = 3∆Ma
2 results. Rewriting the

instability threshold for βt, we see that it scales as

βt > 14.4C2

d3

Ra2q∗2

cosα− cosαc
. (87)

If α = 0 and the critical angle is set to π/2, this result agrees with the simple scalings first

reported by Ryutov et al.15. The critical angle, which can be traced to terms proportional

to derivatives of the jacobian, is an effect due to the convergence of the field lines away from

the null point and could not be captured by the simple arguments previously reported.

V. CONCLUSIONS

Using Ideal MHD theory, instability thresholds are reported which clearly show the scal-

ings and the dependence on the relevant parameters in both the standard and snowflake

divertor configurations. The presence of a critical angle introduces an additional require-

ment for instability. This has been shown to be caused by the variation of the jacobian with

spatial position and is a geometrical effect due to the field-line topologies encountered in the

presence of a poloidal field null. It occurs in addition to the requirement that unfavorable

curvature be present along the flux surface. The possibility of ballooning modes in a stan-

dard divertor could be important if it leads to heat flux broadening. At a more fundamental

level, this theory places a limit on the steepness of the pressure gradient and would place

a floor on the characteristic width of the plasma in the private flux region. This feature

is also present in the snowflake divertor, with the addition that new strike points can now

be activated through turbulent mixing caused by the nonlinear evolution of the ballooning

mode.

We apply the resulting limits to the cases of NSTX, DIII-D, TCV, and an ITER-like

device in Table I. Characteristic values for q∗, a/R, and ∆M/R are given, and C is set to
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TABLE I. Instability threshold applied to various tokamaks

Standard divertor Snowflake divertor

Tokamak q∗ a/R ∆M/R αc βpM,c αc βpM,c

NSTX7,25,26 1.60 0.80 7.1× 10−3 86.6◦ 0.24 cosαc > 1 N/A

DIII-D26 3.17 0.40 2.1× 10−3 89.7◦ 0.36 70.7◦ 0.56

TCV14,25,27 2.03 0.28 9.1× 10−3 88.6◦ 1.3 55.7◦ 5.0

ITER28 3 0.32 1.6× 10−4 89.9◦ 0.14 72.8◦ 6.8× 10−2

unity. From these values, the instability thresholds are computed for both the standard and

snowflake divertor configurations. The instability thresholds are given in the form

βpM >
βpM,c

cosα− cosαc
, (88)

with αc and βpM,c given in the table. For NSTX in the snowflake case, the modes are robustly

stable. Even in the standard case, the threshold given is large enough that instability would

not occur except during a large ELM event. For TCV, the situation is somewhat improved,

in that instability is at least possible in the snowflake case. However, the resulting threshold

is too large to be realistic. From this table, we conclude that this mode is unlikely to

explain the results observed in NSTX and TCV. Considering DIII-D parameters offer a

slight improvement, due to a smaller SOL width, but the limits given are still too high to

be of relevance. Examining conditions relevant to ITER, we see the lowest thresholds for

the standard divertor and snowflake. This is largely due to the much lower value of ∆M/R.

The smaller SOL width is projected by a theory developed by Goldston and Eich28 which

scales well with existing devices. This instability could expand the heat flux and lead to

convective mixing during an ELM when a snowflake divertor is used if the projected SOL

width is correct. For ITER, a generic value of q∗ is chosen in order to make estimates.

This theory can also be applied in the private flux region in order to ascertain whether

these modes could be responsible for the observed heat flux width in this region. In doing

so, we set cosα = 1 and assume cosαc � 1. The resulting values of ∆M justify the

latter assumption. Further, the quantity, ∆M/a is now replaced with the dimensionless flux

function, ψ. The resulting flux function can then be expressed in terms of the distance from

the null point, d, which is unstable, ψ = d2/2a2 for the standard divertor and ψ = d3/3a3 for

the snowflake. The pressure drive is assumed to be provided by plasma transported from the
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TABLE II. Lower bound for width of flux in private flux region during Inter-ELM operation

Standard divertor Snowflake divertor

Tokamak a/R βpM (Inter-ELM) µ d (cm) µ d (cm)

NSTX 0.80 > 6× 10−3 5× 10−4 0.2 1× 10−2 5

DIII-D 0.40 > 3.5× 10−3 1× 10−4 7× 10−2 1× 10−2 3

TCV 0.28 ∼ 6× 10−3 2× 10−5 3× 10−2 1× 10−3 1

SOL towards the divertor region, so characteristic values for βpM are used. The instability

thresholds then become

ψc =
d2

2a2
<

1

4

a2

R2
β2
pM , (89)

for the standard divertor and

ψc =
d3

3a3
<

1

43.2

a

R
βpM , (90)

for the snowflake. A ratio can then be defined of the unstable flux to the flux that character-

izes the SOL, i.e. µ = ψc/(∆M/a). This parameter is given so that as the field lines converge

away from the null point, a meaningful width near the divertor plates can be determined.

Again, attempting to pick parameters relevant to existing devices, we give both the ratio,

µ, and the distance from the null point, d, that would be unstable in the private flux region

in Table II. The results give values that are likely too small to be of interest to the SOL for

Inter-ELM operation. During an ELM, however, the value of βpM can increase by a factor

of 10 − 30. In this case, the values of µ will increase in the table by a factor of 100 − 900

for the standard divertor and 10− 30 for the snowflake. These results would give a floor to

the observed widths of the heat flux in the private flux region during an ELM event. The

theory would need to compared in more detail with experimental data for a given device to

determine if this mechanism is indeed responsible. It would be necessary to account for the

contraction of the flux as it moves from the null point towards the divertor plates.

To explain the enhanced transport observed in TCV, new importance is given to a

toroidally axisymmetric mode16 which is more likely to explain the heat fluxes observed

in the private flux regions on TCV13,14. While this toroidally axisymmetric mode was con-

sidered in a model geometry16, it would be important to perform similar analysis that retains

the complex geometrical effects present. The additional complication is that the resulting
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problem is inherently two-dimensional, and is not amenable to the one-dimensional reduc-

tion that occurs in the ballooning limit. The third possibility that the equilibrium is lost

altogether15 should also be investigated.
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APPENDIX

Here, we consider the case of a straight poloidal field with no null, i.e. the m = 1 case

in Section II. Instead of the designation that |∇ψ| = |∇χ|, we choose that ψ =
∫ x

0
RBp dx

′

and χ = z. The jacobian is easily computed and is J = 1/Bp. In order that we have a valid

equilibrium, R must be aligned with the x-axis and α = 0. Computing first the gradient of

the eikonal, it can be shown that

kt = n
1

R

B

Bp

, (91)

kn = −n ∂

∂x

[
Bt

RBp

]
(z − z0). (92)

Further, the curvature is solely in the normal direction with no geodesic curvature present.

Thus,

κ = − B2
t

RB2
x̂. (93)

Substituting these expressions into Eq. (23) gives

W (ψ) =

∫
dz

R2Bp

[(
1 +

(
Bt

B

ν ′

ν
(z − z0)

)2
)∣∣∣∣∂X∂z

∣∣∣∣2 +
8πp

B2

B2
t

B2
p

p′

pR
|X|2

]
, (94)

where, in this case, ν = Bt/RBp and a prime denotes a derivative with respect to R which
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FIG. 2. Instability threshold for ballooning modes with a vertical poloidal field and azimuthal

toroidal field. Horizontal axis is the product of the shear, s, given by Eq. (95) with the distance

between conducting planes, L, divided by the major radius, R. The vertical axis gives the instability

threshold for the parameter, α, given by Eq. (96) multiplied by L2/R2. Instability exists when

parameters fall above the curve.

is equivalent to a derivative with respect to x. If we define the following parameters,

s =
Bt

B

d log ν

d logR
, (95)

α = βp
B2
t

B2

∣∣∣∣ d log p

d logR

∣∣∣∣ , (96)

and scale the z, coordinate to the distance between the plates, L, by making the transfor-

mation, z′ = z/L, the potential energy can be rewritten as

W (ψ) =

∫
dz

R2L2Bp

[(
1 +

(
sL

R
(z′ − z′0)

)2
)∣∣∣∣∂X∂z′

∣∣∣∣2 − L2

R2
α |X|2

]
. (97)

From the above expression, a differential equation can be found which governs the eigen-

functions that exist at marginal stability. This is given by

∂

∂z′

[(
1 +

(
sL(z′ − z′0)

R

)2
)
∂X

∂z′

]
+
L2

R2
αX = 0, (98)

with X on the domain, z′ ∈ (−1/2, 1/2). From the potential energy formulation, it is clear

that we want to minimize the shear term, so z′0 = 0 should result in the minimum instability

threshold. If the shear is negligible, the most unstable mode is given by

X = C cos (πz′) , (99)
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and results in the instability threshold that

α >
π2R2

L2
. (100)

Further, it is a simple matter to numerically compute the instability threshold as a function

of the shear as this can be easily done with existing routines. Figure 2 plots the instability

threshold as a function of shear. If we assume that the poloidal field is constant with radius,

that the poloidal field is small relative to the toroidal field so that Bt ≈ B, and that the

toroidal field is well approximated by its vacuum solution, i.e. that βt � 1, then s = −2.

Further, to compare the instability threshold to that in Ref. 16, we take R/L = 5. This

gives the instability threshold of α > 252. The derivative, |d log p/d logR| = R/Lp, where

Lp is the characteristic length scale over which the pressure gradient drops. If we take this

to be the width of the SOL, the instability threshold results in βp > 2.3. This is much

lower than the instability thresholds reported in Ref. 16. However, the ballooning modes

are much more sensitive to the effects of shear, so it is possible that in a realistic divertor

configuration, the axisymmetric mode would be of greater relevance.
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